If it's not what You are looking for type in the equation solver your own equation and let us solve it.
42x^2+264x-72=0
a = 42; b = 264; c = -72;
Δ = b2-4ac
Δ = 2642-4·42·(-72)
Δ = 81792
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{81792}=\sqrt{576*142}=\sqrt{576}*\sqrt{142}=24\sqrt{142}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(264)-24\sqrt{142}}{2*42}=\frac{-264-24\sqrt{142}}{84} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(264)+24\sqrt{142}}{2*42}=\frac{-264+24\sqrt{142}}{84} $
| 9j=954 | | (7x)x9=81 | | (x⁴)³=x | | x+3=x-16 | | x+0.055x=10 | | 9w+6=33 | | -10=-8+m/1 | | v/20=40 | | ½×-⅔y=-6 | | 6^0.3x+18=27 | | x+0.055x=20 | | x+.055x=20 | | -3(x-4)-x=-36 | | -1x-2=3(x+2) | | 3x-6x=x-28 | | 127.69=2x^2 | | 4x+8=12×-24 | | 4x-5x+4+2x=7(2x+3) | | 1/3(x-12)=-12 | | 8-d=7 | | 3x+2x-5=21-8x | | 4x-8=-13+4x | | (2a-1)°=(6a-5)° | | 12x-12=2(6x-6) | | 7=k/4.2 | | 48=2/3x | | 120+n=193 | | 80-r=35 | | 56=(8x+3) | | 7=k/3.6 | | 13÷2x+1=5 | | -4(y-3)=5(2y-6 |